Paper 21-41

DOI: http://doi.org/10.26883/2010.211.3268

ОБОБЩАВАНЕ НА ОЛИМПИЙСКИ ЗАДАЧИ ЧРЕЗ ДИНАМИЧЕН СОФТУЕР

Сава Иванов Гроздев¹, Веселин Ненков Ненков²
¹City College, University of Sheffield
²Висше военно-морско училище, Варна

GENERALIZATION OF OLYMPIAD PROBLEMS WITH DYNAMIC SOFTWARE

Sava Grozdev¹, Veselin Nenkov²
¹City College, University of Sheffield
²Nikola Vaptsarov Naval Acedamy, Varna

Abstract: Various meaningful generalizations could be obtained after gaining insight into some mathematical assertions from different points of view. Generalizations of two problems from International Mathematical Olympiad papers are shown when the details are combined with the opportunities of the program software „The Geometer’s Sketchpad “ (GSP).

Keywords: triangle, circumscribed circle, in-circle, conic, GSP.

References:

  1. Smaling, A., Inductive, Analogical and Communicative Generalization, International Journal of Qualitative Methods, 2 (1), Winter, 2003, 1–31.
  2. Grozdev, S. Mezhdunarodna olimpiada po matematika. Matematika plyus, 3, 2011, 56–59.
  3. Paskalev, G., I. Chobanov. Zabelezhitelni tochki v triagalnika. Narodna prosveta, Sofia, 1985.
  4. Prasolov, V. Zadachi po planimetrii. Chast I. Moskva: Nauka, 1986, 154, zad. 9.23.
  5. Sharыgin, I. (1986). Zadachi po geometrii. Planimetria. Moskva: Nauka, 1986, 52, zad. 139.
  6. Nenkov, V., Obobshtenie na teoremata na Foyerbah, Matematika i informatika, 2, 2008, 35–42.
  7. Grozdev, S., V., Nenkov. Okolo ortotsentara v ravninata i prostranstvoto. Sofia: Arhimed 2000, 2012.
  8. Grozdev, S., V. Nenkov. Edna zabelezhitelna tochka na triagalnika. Matematika i matematichesko obrazovanie, 41, 2012, 330–337.
  9. Grozdev, S., V. Nenkov. Dopiratelni okrazhnosti, porodeni ot intsidenti tochka i prava, Matematika i informatika, 2, 2012, 151-160.
READ FULL PAPER