Paper19-22

DOI: http://doi.org/10.26883/2010.191.1507

COMPUTER SUPPORTED RECONSIDERATION OF CONICS

Borislav Yordanov Lazarov¹ , Dimitar Georgiev Dimitrov²
¹Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
²125th Secondary School – Sofia

ПРЕРАЗГЛЕЖДАНЕ ПРЕДСТАВЯНЕТО НА КОНИЧНИТЕ СЕЧЕНИЯ НА ОСНОВАТА НА КОМПЮТЪРНИ ТЕХНОЛОГИИ

Борислав Йорданов Лазаров¹, Димитър Георгиев Димитров²
¹Институт по математика и информатика – БАН, София
²125 СУ „Боян Пенев“, София

Abstract: Under consideration is a way to present the conics in a dual manner: as loci and envelopes. A bunch of computer technologies is drawn to explore and investigate this duality of the conics. An example of how it is done for a particular conic is given. The target group includes secondary school students who are advanced in math and information technologies. The theoretical base is an original didactical model for designing individual educational trajectories that is adapted for the team-working mode. The educational goal includes developing synthetic competence of an entire team. The individual characteristics of the team members complement one another for resolving complex problems from the local behavioral environment, which were specifically formed for the purposes of the experimental teaching.

Keywords: synthetic competence, individual educational trajectory, conics, loci, envelopes.

References:

  1. Van der Varden, B.L. Probuzhdashta se nauka. Izdatelstvo ‘Nauka i izkustvo’, Sofia, 1968. Pages 300, 330, 331. (In Bulgarian) (Ван дер Варден, Б.Л. Пробуждаща се наука. Издателство „Наука и изкуство“, София, 1968, страници 300, 330, 331.)
  2. Dimitrov, M., Peeva, G. & Stoyanov, B. Konichnite sechenia kato geometrichni mesta na tochki i obvivki. Matematika, br. 1, 2019, Pages 46-57. (In Bulgarian) (Димитров, М., Пеева, Г. & Стоянов, Б. Коничните сечения като геометрични места на точки и обвивки. Математика, бр. 1, 2019, 46-57.)
  3. Paskaleva, Z., Paskalev, G. Matematika 8. klas. Sofia, Arhimed, 2001, Pages 253-256. (In Bulgarian) (Паскалева, З., Паскалев, Г. Математика 8. клас. София, Архимед, 2001, стр. 253-256.)
  4. Paskaleva, Z., Paskalev, G., Alashka, M. Matematika 8. klas. Sofia, Arhimed, 2013, Pages 188-189. (In Bulgarian) (Паскалева, З., Паскалев, Г., Алашка, М. Математика 8. клас. София, Архимед, 2013, стр. 188-189)
  5. Akulenko, I. et al. Current Status and Prospects of Mathematical Education. Eds. prof. N. Tarasenkova, & L. Kyba. – Budapest, SCASPEE, 2018. Pages 37-53.
  6. Lazarov, B. Teaching envelopes in secondary school. The Teaching of Mathematics, vol. XIV, 1 (2011). Pages 45-55
  7. Lazarov, B. Paper and Pencil versus ICT – Battlefield Geometry. Е-learning, distance education or … The education of 21st century international conference. Sofia, Bulgaria, 6-8 April 2011. Conference proceedings. Pages 123-130
  8. Froydentaly, G. Matematika kak pedagogicheskaya zadacha, Chasty І. Moskva Prosveshtenie, 1982. Pages 43-44. (In Russian) (Фройденталь, Г. Математика как педагогическая задача, Часть І. Москва, Просвещение, 1982, с. 43-44.)
  9. Lazarov, B. Application of some cybernetic models in building individual educational trajectory. Information Models and Analyses. Vol. 2, No1, 2013, Pages 90-99.

(Endnotes)

1. Uchebni programi za VIIІ klas v sila ot uchebnata 2017/2018 godina, utvardeni sas № RD09-300 ot 17.03.2016 g. Prilozhenie № 14 kam t. 14. UChEBNA PROGRAMA PO MATEMATIKA ZA VIIІ KLAS (OBShtOOBRAZOVATELNA PODGOTOVKA) https://mon.bg/bg/1690 (May 2019, In Bulgarian)
2. Uchebni programi za VII klas v sila ot uchebnata 2018/2019 godina, utvardeni sas Zapoved № RD09- 1093/25.01.2017 g. Prilozhenie № 23 kam t. 23. UChEBNA PROGRAMA PO MATEMATIKA ZA VII KLAS, OBShtOOBRAZOVATELNA PODGOTOVKA https://mon.bg/bg/1690 (May 2019, In Bulgarian)
3. Highlights of the Olympic Flame Lighting Ceremony for the Rio 2016 Olympic Games, https://www.youtube.com/watch?v=hl4Ly6bWNzE
4. https://www.wevideo.com/ – онлайн видео редактор
5. Dimitrov, D., Lazarov, B. Edinno predstavyane na GMT i obvivki v ІX klas (hronikata na pedagogicheski eksperiment). Doklad na seminara Didaktichesko modelirane, IMI, 8.04.2019 g. http://www.math.bas.bg/omi/didmod/

READ FULL PAPER